skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chu, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Musicians and nonmusicians alike use rhythmic sound gestures, such as tapping and beatboxing, to express drum patterns. While these gestures effectively communicate musical ideas, realizing these ideas as fully-produced drum recordings can be time-consuming, potentially disrupting many creative workflows. To bridge this gap, we present TRIA (The Rhythm In Anything), a masked transformer model for mapping rhythmic sound gestures to high-fidelity drum recordings. Given an audio prompt of the desired rhythmic pattern and a second prompt to represent drum kit timbre, TRIA produces audio of a drum kit playing the desired rhythm (with appropriate elaborations) in the desired timbre. Subjective and objective evaluations show that a TRIA model trained on less than 10 hours of publicly-available drum data can generate high-quality, faithful realizations of sound gestures across a wide range of timbres in a zero-shot manner. 
    more » « less
    Free, publicly-accessible full text available September 21, 2026
  2. We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing (TMS) of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks. 
    more » « less
  3. Engineering a Hamiltonian system with tunable interactions provides opportunities to optimize performance for quantum sensing and explore emerging phenomena of many-body systems. An optical lattice clock based on partially delocalized Wannier-Stark states in a gravity-tilted shallow lattice supports superior quantum coherence and adjustable interactions via spin-orbit coupling, thus presenting a powerful spin model realization. The relative strength of the on-site and off-site interactions can be tuned to achieve a zero density shift at a `magic' lattice depth. This mechanism, together with a large number of atoms, enables the demonstration of the most stable atomic clock while minimizing a key systematic uncertainty related to atomic density. Interactions can also be maximized by driving off-site Wannier-Stark transitions, realizing a ferromagnetic to paramagnetic dynamical phase transition. 
    more » « less